
Journal of Engineering Physics and Thermophysics, I/ol. 73, No. 2, 2000 

C O M P A R A T I V E  A N A L Y S I S  O F  T U R B U L E N C E  M O D E L S  

E. P. Sukhovich UDC 532.517.4 

A comparative analysis is pe(#ormed.for a complete locally anisotropic turbulence model of the second 
order and e.risting turbulence models. The comparison draws on experimental data, data of a direct 
numerical simulation of the nonstationarv Navier-Stokes equations for a deveh)ped channel .flow and a 
un(#orm channel .flow with a constant velocity shift, and results for turbulence dumping behind a grid. 
The K-~ model and the quasi-isoo'opic turbulence model are shown to have marked disadvantages, 
especially in describing turbulent .flows with a high degree of anisotropy of pulsatorv motion. Use qf a 
locally anisotropic turbulence model improves the accuracy of determining Reynolds stresses. Consid- 
eration is given to the advantages and disadvantages of the turbulence models discussed. 

Introduction. Applied problems of hydrodynamics and heat and mass transfer in turbulent fluid flows 
must be solved using one or another turbulence model. A great many works have now been published that 
describe turbulence models of different degrees of complexity. The K-e  turbulence model is the most popular. 
However, in many cases use of the K-e model for describing intricate turbulent flows does not produce results 
that agree with experimental data. Therefore, it is reasonable to employ a more complex turbulence model lbr 
Reynolds stresses that takes account of the anisotropy of the latter. Comparison of numerical results with reli- 
able experimental data has revealed that the turbulence models tor Reynolds stresses that have been developed 
to date describe the dissipation process and the process of energy redistribution between the components of the 
Reynolds stresses as a result of pressure pulsations with insufficient accuracy. In recent years, turbulence mod- 
els have been actively worked out that take into account not only the anisotropy of the Reynolds stresses but 
also the anisotropy of the dissipation processes. 

The current work aims at analyzing the accuracy and ranges of applicability of the above turbulence 
models. Consideration is given to some existing turbulence models and a complete turbulence model of the 
second order obtained in [8-10]. A comparison is made using experimental data for a uniform channel flow 
with a constant velocity shift and data tor turbulence damping behind a grid. Below, a brief description of the 
principal turbulence models discussed in the work is given. 

K-e  Model. The published literature has offered a great number of various versions of the K-e  model. 
A review of works published before 1984 is presented in [1]. The basic equations of the model have the form 

D K = p t _ ~ . + D  k ; (1) 
Dt 

D~ aP ~. E 2 ( K ) 
-~ = C~l f~ ' - £ -  C~2A -~ + c~ ~ R~.~,, ,~. + E.  

R,./ / 1 1 
bij = 2K 3 6(i = - Vr°man--g Sij " Sij = -2 (Ui j  + Uj'i) ; 

(2) 

(3) 
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v t = C o f  ~ --,K2 "e = ~ - D', (4) 

C~t=0.09, Ce1=1.45 ,  Ce2=1 . 9 ,  Ce=O. 15. (5) 

The various versions of  the model differ in the torm of  the empirical wall functions.f~t,.ft,.f2, E, and D. A table 
that provides corresponding relations tor these functions proposed in published works is given in [2]. It should 
be noted that the introduction of such a large number of  wall functions indicates serious shortcomings of the 
model that make it impossible to calculate boundary-layer flows at the wall with an acceptable degree of ac- 
curacy. An analysis [3] demonstrated that the K - e  model can be derived from a more complex model for 
Reynolds stresses under the following assumptions: small-scale motions are isotropic, velocity gradients are 
small, and equilibrium between the generation of turbulent energy and the dissipation rate is maintained in the 
flow. Furthermore, the model is valid only for plane flows with a simple velocity shift. The above constraints 
narrow the range of applicability of the considered model so much that it is difficult in practice to find a flow 
tbr which the K-E model can be used. However, the latter is employed in many works for calculating stratified, 
swirling, and other intricate flows. As a rule, in these cases, in order that calculated results agree with experi- 
mental data, various empirical functions are introduced that do not have sufficient physical substantiation. 

Quasi-isotropic Turbulence Model for Reynolds Stresses. Among contemporary turbulence models, 
turbulence models of  the second order are widely popular. A way to construct them was proposed in the early 
70s in [4]. The essence of this approach lies in the fact that the Reynolds stresses should be determined from 
an exact equation for second single-point moments. Results of  the latest investigations are published in [5]. The 
basic equations of  the model have the form 

DRii 
Dt  = F6 + P6 + ¢I~6 - 2~i/ + D~:i , (6) 

9 

D--t = C a  - K - - C E 2 - K  +C~  7 ~lSl ' 
k 

(7) 

i VKRkIR#~]  
EiJ = -3 g~iJ' D~i = - Cs L ~ " J.k (8) 

O(i = - C] Eb 0 + 

l 1 Pk i i  h = -  1 
Wij = -~ (Ui, i - Ui,i), (bS(  = b 6 Sji - 2 K " ~ bikhki, C, = 0.22 ; 

(9) 

(10) 

C 1 = 3 . 4 + 1 . 8  Pk,  d 1 = 0 . 2 - 0 . 3 2 5 ( - 2 1 1 h )  1/2 d~=0.3125 d3=0.1 
E 

(ll) 

The coefficients Ca ,  Ce2, and Ce are taken to be the same as in (5). 
In [6, 7], the advantages and disadvantages of  the model considered were analyzed. It was found that 

it permits prediction of a series of effects that cannot be described by turbulence models that use the notion of 
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the coefficient of turbulent viscosity. Yet, there are a number of numerical calculations that describe experi- 
mental data inadequately. According to current views, the following reasons are behind the disadvantages of 
the model: 

1. In some cases, approximation (9) describes the energy redistribution in terms of the pressure pulsa- 
tions erroneously. Simple addition of a few more empirical coefficients to the existing relation for ¢bij cannot 
lead to a positive result. A qualitative improvement of the description of the redistribution process requires 
fundamentally novel approaches to the closing methodology. 

2. The assumption of isotropy of the dissipation processes is not supported by existing experimental 
data or data of direct numerical simulation. Theretbre, the relation for ~i in (8) should be recognized as inade- 
quate. Determination of ~(i from the corresponding differential equation seems more promising. 

3. The most serious drawback of the turbulence model is errors linked with an incorrect description of 
the dissipation process. It should be noted that Eq. (7) for the dissipation rate is based on intuitive notions. A 
proper description of the dissipation process requires modeling of the exact equation for the dissipation rate. 

Locally Anisotropic Turbulence Model of the Second Order. The exact equations tbr second single- 
point moments have the form 

DRii 
Dt = F6 + PO + ~O - 2e4j + D o , (12) 

Dei/ 
Dt  = F(e)ij + P{el)6 + P(e2)ij + Pie3)(/+ P(e4)(j + l-l(e)ij q- D(e)6 + Tte)6 - Yte)6 " (13) 

Within the framework of the complete turbulence model of the second order, the term P6 is expressed 
in terms of the known correlation R~/, and the tensor of the dissipation rate E(j is determined from Eq. (13). The 
terms ~6 and Dij contain higher-order correlations and, as a consequence, must be expressed in terms of known 
correlations. The exact equation for the tensor of the dissipation rate involves five generation terms: F~)~i, 
P(el)ii, P(e2)6, P(~3)6, and P(e4)q, and FI{~)(i is a correlation that determines the redistribution of the dissipation 
rate E,I i in terms of the pressure pulsations, Y(E)~i is a correlation that determines the viscous breakdown of 
small-scale vortices, T{e)( i is the turbulent diffusion of e,lJ, and D(~)6 is the viscous diffusion of e6" In Eq. (13), 
the terms F(e)6, Pc~t)ij, and Dc~)i j are expressed in terms of known correlations and therefore do not need to be 
modeled. The remaining terms of Eq. (13) contain higher-order correlations, for which appropriate approxima- 
tions must be found. 

In [8-10], a modeling technique was proposed that is based on data of a direct numerical simulation 
(DNS) of the nonstationary Navier-Stokes equations for a developed channel flow. As the initial approxima- 
tions for the unknown correlations use is made of relations obtained previously by the method of invariant 
modeling. As a result of  the modeling, the type of approximations for the unknown correlations was ascer- 
tained and the empirical coefficients that enter these approximations were found. 

The approximation for the correlation that describes the turbulent-energy redistribution between the 
components Rij has the form 

(I)ij = (I)(t)6 + (I)(2)( / + (I)(3)(j, (14) 

where ~(1)0 depends only on the interaction of the velocity pulsations and reflects the tendency of the field of 
velocity pulsations toward an isotropic state. In [8], the term 19(1)6 was modeled, which resulted in the approxi- 

mation 

(15) 
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C l = C l o f + C l l l F b ,  C 2 = 3 C m f ,  C l 0 f = l . 2 ,  C l l f=4 .28 ,  

F# = 1 + 911# + 27HI h . 

The term ~-~ii depends on the interaction of the average velocity shift with the velocity pulsations. An 
approximation tbr this correlation was obtained in 19]: 

J,s~ + d, I.,,,s,,~ + h~,~,,~ --~ q.s( ~,j + d~ (#~,,w.~ +/%w,,~) + 
g g " 

( 2 2 1 +  d4 (]~2S( hij + ds (b,~;( l~ij + + d 4 (bS( b,: i + ~ 11~j . . 

"1 ") "~ 0 ] 
+ d 7 (bq, Wl~ i + l~pWpi ) + d 8 (bil,%qbq, + bjpWI,qh;, )j , ( i  6)  

where 

( ; - s (  = h , , A , . , s ° ,  , , : 

dH~=0.2, d t l = i / 3 ,  d o = l ~ 2 ,  d 3 = - 0 . 3 ,  d 4 = 0 . 2 ,  d 5 = - 1 . 2 ,  

(17) 
d6=0 .1 ,  d 7 = - 0 . 7 ,  d s = 0 .  

The tern] (I)(3~i i takes into account the wall elt~ct. The DNS data unambiguously demonstrated that the 
approximation dO<3)(i/c is negligible in the entire flow region up to layers in the immediate vicinity of the wall. 
As a consequence, in [9] it was recommended to set 

~c~)# = 0 .  ( I 8) 

For the diffusion term D~i we use the approxinmtion written in (8). Approximations tbr the unknown 
correlations that enter Eq. (13) can be written as [10] 

~v K (g i + gic(ni)  ; (19) K F~c),:i - - g(~)i 
E- V + o  E- 

K K (gik I~ik ") K c i  Pk K 
P(~1)6 U - -  ~ P ( e 2 ) i j  = 'J - P(c3)6 = 0" (20) 

g E E £ g g 

K K 
D(~)i j = ve i i .~  k " (21  ) 

K T(c) 6 = C~, (Rk,,, c6. m + Rim Cjt. m 
e- - U L C  J.k 

(22) 
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~l](e)ij=KI(Zle(gikUj.k+gjkgi,k-gEmnUm,n~ij)+ 

+O~2e(gikgk,j+~jkgkd-ggrnngn.m~(j)+O~3eg(Ui,j+gj.i)]+Y5d~i ; (23) 

K 
K +a~ Pk+a3X 1 +a4F h 3~4 : bl '-2 P~I +b'~Pk+b3Xl +b4Fb, 3"/2 = a  1 --5_ Pel _ , _ 
g g g E 

(24) 

where al = 1.75, a2 = 3.4, a3 = -0.29, a4 = 3.6, bl = 1.35, /52 = 3, h 3 = -0.06, /54 = 5.6, and Ce = 0.15. The 
remaining coefficients of approximations (20)-(23) are unknown at present. 

Equations (12)-(24) represent a complete locally anisotropic turbulence model of  the second order. Ap- 
proximations (14)-(18) for the correlation Oii are new. A comparison of calculations with results of  direct nu- 
merical simulation on the nonstationary Navier-Stokes equations that are presented in [8, 9] revealed that the 

approximations discussed describe the DNS data much more accurately than relation (9). Equations for the tur- 
bulent kinetic energy and the dissipation rate are obtained by convolution of Eqs. (12) and (13) in the indices 
i and j: 

DK = Pk - ~ + Dk , (25) 
Dt 

K De P~. K 
- Cel - -  - Ce2 + C~3 -'2_ P~l - C~4 X 1 + 

g" Dt g g 

K K 
+ Ce ~ Te + --7 (Fe + P~3 + He + De),  (26) 

g g 

where Cel = 1.4, Ce2 = 2Fb, Ce3 = 1.4, Ce4 = 0.22, and Ce = 0.15. 
The terms on the right-hand sides of Eqs. (25) and (26) can be obtained by convolution of the corre- 

sponding terms of Eqs. (12) and (13): 

D k = - C, Rk~. t  
L J,k 

213v 
, F e  = - - -  g i  g('t:)i, 

v w a  

Pk E 
P~I =-2gil,-Uk.i, P~2= K " P e 3 = O ,  FI~=O,  

2 

Uniform Flow with a Constant Velocity Shift. To obtain data needed for modeling turbulence, S. 
Corrsin and colleagues conducted a special series of experiments tbr channel flow with a constant velocity shift 
[11-13]. A review of works on investigating unitbrm flows over the last 40 years" is presented in [14]. All 
components of  the tensor of Reynolds stresses, the turbulent kinetic energy, the dissipation rate, pulsation spec- 
tra, two-point correlations, and some other parameters were measured in the experiments. The experiments 
were carried out for different velocity gradients. Results of  the investigations were checked more than once, 
and their reliability raises no doubts. In view of the foregoing, we use these data for testing the turbulence 
models considered in the present work. To this end, we apply Eq. (25) and write Eqs. (12) and (26) in the 

form 
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K Db(i P(T D~I (P6 2 P k  ) 2--  =-2bij - 1 + - -  + - - - - 8 6  + 
e D t  e e 3 8  

O# 2 D~. 
+--~- - 2do + (D~i --s T eii ), (27) 

K De 
- C~1 

e 2 Dt - -  _ Ce2 - 2Ce3 - -  X 1 - Ce4 XI + C e -7_ (RI,,, e.m) 
e e g J.k 

+ 

K 
+ --7 (FE + Pe3 + Fie + De),  (28) 

g 

where 

3 e 

4 K  
-27  --5 "E =--5 7 s,j h~Ski + aiA~ (hS( ~ + ~ -- (h~Wj~ + a~W~k). 

In [15] it was shown that, for the experiments presented in [l 1-13], the convection and diffusion terms 
in Eq. (27) can be disregarded, i.e., 

K Dhij 
Dt =0' D(i--O, D k = O .  

It follows from 1101 that, for a uniform flow, the terms Pe3, De, 1-I~, and F e on the right-hand side of  Eq. (28) 
are much smaller than the remaining terms of the equation. With allowance tbr these evaluations, Eqs. (27) and 
(28) assume the following s imple form: 

( ] ) (  1 )(i (I~(2)(i 
E E 

- -  + 2d( i  = 0 ,  (29)  

K De  Pk 
~, - -  C e l  - -  --  C c 2  - 2CE3 ~ X I - Ce4 X 1 . (30) 

8- Dt e e 

To determine the Reynolds  stresses, we write Eq. (29) in a Cartesian coordinate system as 

8 (I~(2).~: r 
2b~r (2Xlb ~, + 1) - -5 Xlb.,y + O 0 > v +  - -  - 2 d ~  = O, (31) 

" " E E " 

4 O(2)yy 
2 b v v  (2Xlb,w + 1) + -5 X l b ~ w  + q~(I)yy + _ _  _ 2dvv = 0 ,  (32) 

where 

2h~. ( 2 X J ~  v + 1) - 2X 1 
1 ) (I:)( 1 ).~y O(2)ay 

b,,,, + ~ + + - -  - 2d,.,, = O, (33) 
-- g g -- 
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Fig. 1. Comparison o f  calculated results for components h m  b~:v, and ho, 
of  the tensor of  Reynolds  stresses with data tbr a uniform flow: 1) calcu- 
lation by Eqs. (31)-(33); 2) calculation by the equations of  [5]; 3) K-e  
model; 4) experimental  data of [12]; 5) data of 113]; 6) data of  [141; 7) 
DNS data of  [19]; 8) DNS data of  [20]. 

qb( l )ay 

E 

I d O ( l ) x * - - C l b , ~ . + C ,  ~x+b'~, ,+~llh ; 

1~(1 )yy Clbvv + C2 + b_y +_~ llh ; 
E _. 3' 

= - -  Clbxy + C 2 b x y  (brx + bvv).. ; lit, = - -~ (b-~,... + b~. v.. + bT__ + 2b~r).. ; 

1 ~ ~ 3 "~ "~ K OU t 
lilt, = ~ (b.~. + b;.~. + b__ + 3hTw (b~,. + b~.,.)) ; X t - " , 

. . . . . . . . . .  e 3y 

*~2~~'-4x,h~, d 2 - d 3 + d 4  hL+h~,,+2l/ +d4G.,h++dsG~+-SGh -dTh ; 

/ 2 /  + ' + +/ 
~ =  & + d~ + d 4 ~.,. + b'~,. +-s  I l  + d4byyh + dsb~,. +-s  G b  + dvl~ ; 

q~(2).9' - + 2 2 
- 2X t (d 1 + d2b + + d3b + 4d4b bxy + 2dsbxy + d6b 6 + dTb+b -) ; 

b+ = G.~ + h,.,, ; h- = h , ~ -  G,,', b6 = b~,+ 267,." + 1 G" . 

Within the framework of  the complete turbulence model of the second order, the tensor of  anisotropy 
of  the dissipation rate dij must be obtained from the solution of Eq. (13). However,  at present this relation 
cannot be used, since some coefficients of  the approximations that model its correlations have not been found 
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Fig. 2. Rate of variation of e for a uniform flow: 1) calculation by Eqs. 
(30)-(33); 2) calculation by Eqs. (7)-(11); 3) experimental data of  [17]; 4) 
data of [ 18]. 

as yet. In this connection, d 6 is determined using results of a numerical solution of the nonstationary 
Navier-Stokes equations for a uniform flow 116], according to which d~i -- 0.85/9~i. 

Thus, all quantities that enter Eqs. (31)-(33) have been obtained. Expressions (31)-(33) represent a non- 
linear system of  algebraic equations that cannot be solved in explicit form. Its analysis shows that the compo- 
nents of the tensor of Reynolds stresses are determined by a single dimensionless parameter Xl that can be 
regarded as a local similarity parameter for a uniform channel flow with a constant velocity gradient. This 
system can be solved numerically. Figure 1 shows calculated results. The points in the figures represent meas- 
urement results and data of a direct numerical simulation of a uniform channel flow with a constant velocity 
gradient. The same figures show results calculated using the K-e model, the quasi-isotropic turbulence model 
that is represented by relations (6)-(11), and the locally anisotropic model. It is seen from the figure that the 
K-e turbulence model describes both the normal components of the tensor of  anisotropy of the Reynolds 
stresses and the tangential component of this tensor inadequately. It should be noted that, in the unitbrm flow 
considered, the wall has no effect on the flow. Theretbre, the large error in determining b.~ v using the K-e 
model, especially tot large values of the normalized velocity gradient Xi, directly indicates substantial disad- 
vantages of this model. Use of the quasi-isotropic turbulence model tbr calculations also leads to large errors 
in determining b,y. Attention is called to the fact that the latter model has a number of modifications: 

a) a complete model that presumes a solution of Eqs. (6)-(! 1), 
b) an algebraic modification of the model that uses the Rodi hypothesis [5], 
c) the same that uses a special regularization procedure [5]. 
In Fig. 1, the dashed lines show curves obtained by solving the complete system of equations (6)-(I 1). 
To assess the accuracy of describing the dynamics of the variation in the dissipation rate of the turbu- 

K DE 
lent kinetic energy, Fig. 2 plots ~-~--~- vs. the normalized velocity gradient X1. The points for XI -= 0 indicate 

experimental data ['or turbulence damping behind a grid, published in [17], and data obtained in [18] tbr a 

K DE 
unitbrm shear channel flow. The curves are results of calculating e-- 5 D~- by Eqs. (7) and (30). It is seen from 

the figure that the two models tbr the dissipation rate are in favorable agreement with the experimental data. 
At the same time, the initial equations of the models considered are quite dissimiliar. Let us examine this situ- 
ation in more detail. Equation (7) was modeled using experimental data for uniform turbulence. Therefore, Eq. 
(7) is in favorable agreement with them (see Fig. 2). In [10], results are presented from which it follows that 
the equation considered describes the data for a developed channel flow inadequately. Thus, the conclusion can 
be drawn that model equation (7) Ior the dissipation rate has serious disadvantages. Unlike Eq. (7), in [10] the 
equation for the dissipation rate was modeled on the basis of DNS data for a developed channel flow. Relation 
(30) thus obtained describes fairly accurately not only the data for a developed channel flow but also the data 
fbr a uniform flow that are presented in Fig. 2. Theretbre, advantages of Eq. (30) over Eq. (7) can be relied 
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Fig. 3. Comparison of calculated results for components h~x, bvy, and h,y 
of the tensor of anisotropy of  Reynolds stresses with data for a developed 
channel flow: 1) calculation by Eqs. (31)-(33); 2) calculation by the equa- 
tions of [5]; 3) K-e  model; 4) DNS data of [181. 

on. A definitive conclusion as to the capabilities of  Eq. (30) will permit wider testing of it using data tbr 
various flows. 

Developed Channel Flow. In [18], results of  a direct numerical simulation of the nonstationary 

Navier-Stokes equations for a developed channel flow are presented. They were employed in [8-10] for mod- 

eling unknown correlations in Eqs. (12) and (13). We use these data for testing the turbulence models consid- 

ered. For a developed channel flow, K Dbij_ ~2 Dt -O, Diy ;~ O, and Dt ~:0. With allowance for these relations, the 

initial equation tor the components of the stress tensor takes the form 

2bii ( ~ -  I Dk ~ 4 K K 2 
+--+5-- e J g S~i + 2 7 (biaS~j + l~jaSki '5 (bS( 86 I- 

( 2ok I K *6+2dii ~ e  3 ~ 8 6  = 0  (34) - 2 7 (hi~W,k + hjkW~O - - 7  

For relation (34) in a Cartesian coordinate system there is a corresponding system of  nonlinear algebraic equa- 
tions for the components of the tensor of anisotropy of the Reynolds stresses. It was solved using the values 
of the dissipation and diffusion terms from [18]. Figure 3 shows a comparison of  results of solving the system 
of algebraic equations with data of [18]. The points in the figure show data of  a direct numerical simulation 
that were published in [18]. The same figure presents results of calculations using the K-g model, the quasi- 
isotropic turbulence model (6)-(11), and the anisotropic turbulence model of the second order. In the calcula- 
tions based on the K-e model, the wall function had the form [2] 

.f~t= 1 - e x p  [ - 6 .  10-3Y+- 4 - 10 -4 (Y+)2 + 2.5 • 10-6 (Y+)3- 4 • 10 -9 (y+)41. 

It should be noted that good agreement between the locally anisotropic model and the DNS data is explained 
mainly by the fact that unknown correlations in the equation for the Reynolds stresses were modeled based on 
exactly these data. It is seen from the figure that the quasi-isotropic turbulence model and the K-E turbulence 
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model describe both the normal components of  the tensor of anisotropy of  the Reynolds stresses and the tan- 
gential component of this tensor inadequately. 

Discussion. Three turbulence models have been compared with available data. The models were tested 
using experimental data and data of  a direct numerical simulation of a developed channel flow and a uniform 
flow with a constant velocity shift. Let us examine the main findings of testing for each of the models consid- 
ered. 

The best-known and most commonly used turbulence model is the I C e  model. It suggests that the tur- 

bulence anisotropy is equal to zero in all cases. The tangential component of  the Reynolds stresses is deter- 
mined using the notion of  the coeff ic ient  o f  turbulent viscosi ty,  whose  magni tude is assumed from 
considerations of dimension to be proportional to the square of  the turbulent kinetic energy and inversely pro- 

portional to the dissipation rate of  the turbulent energy. The proportionality factor was selected so as to obtain 
the best agreement between the calculated results for the averaged characteristics and the available experimen- 
tal data for a number of flows. Here, the task of describing accurately the turbulent characteristics of  the flow 
was not undertaken. A comparison of the data tbr a uniform flow with a constant velocity shift with the cal- 
culations using the K-e  model revealed that the model permits detemfination, with an acceptable degree of 
accuracy, of the tangential component of the Reynolds stress at small magnitudes of  the normalized velocity 
gradient, i.e., tbr X1 < 5. At large magnitudes of  the velocity gradient, the error becomes inadmissibly large. 
For a boundary-layer flow, the calculations show better agreement with the DNS data. However, an appropriate 
empirical wall function that ensures this agreement must be used here. Thus, the K - e  model cannot be recog- 

nized as adequate even for the two simple flows examined. This is attributable to the fact that the desire to 
obtain a relatively simple turbulence model has led to neglect of mechanisms essential to turbulence in con- 
structing the K-E model. 

Unlike the K-e  model, the quasi-isotropic model is based on exact balance equations for the compo- 
nents of the tensor of Reynolds stresses and in this sense is fairly well justified on condition that the dissipa- 
tion, diffusion, and energy redistribution between the components of  the tensor of  Reynolds stresses are 
described to sufficient accuracy. Detailed investigations 18-10] showed that the approximations for the enumer- 
ated correlations that are used in the quasi-isotropic model do not satisfy the above condition. This is explained 
by two reasons. First, the developers of the model sought to obtain the simplest possible approximations which 
would be convenient to use in subsequent numerical calculations. Second, in the years when the quasi-isotropic 
model was developed, there were no sufficiently detailed and reliable data for the correlation of  the pressure 
and the strain rate or for the components of  the tensor of the dissipation rate. 

The results presented in the current work indicate major disadvantages of  the quasi-isotropic model. 
The greater the velocity gradient and, correspondingly, the turbulence anisotropy, the less accurately does the 
model describe the data lor a uniform flow with a constant velocity shift. The accuracy in describing a devel- 
oped channel flow cannot be recognized as satisfactory either. It should be noted that in the current work we 
determined the Reynolds stresses by solving a complete nonlinear system of equations. In many published nu- 
merical calculations, a simpler algebraic modification of the quasi-isotropic model is usually employed. In this 
case, for calculated results to be in favorable agreement with experimental data, matching via empirical coeffi- 

cients is frequently used or physically ill-founded empirical functions are introduced. Such an approach cannot 
be recognized as acceptable, if one seeks to devise a method of solution of turbulence problems rather than 
describe a specific flow. 

The considered complete locally anisotropic turbulence model of  the second order was obtained by 
modeling each of the unknown correlations in exact equations tbr the tensor of  the Reynolds stress and the 
tensor of the dissipation rate. This approach yielded modeling relations that describe to good accuracy the be- 
havior of  the above correlations in flows with a high degree of turbulence anisotropy. Specifically, the approxi- 
mations obtained correctly describe the behavior of  the unknown correlations at all points of  the boundary 
layer, including the immediate vicinity of  the wall. 

A comparison of the calculated results with the available data for a uniform flow and a channel flow 
demonstrated that the model adequately describes the distributions of all the components of the stress tensor 
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and the dynamics of the variation in the dissipation rate. Here, a single system of  equations is employed for 
the external and internal parts of the boundary layer, and no additional empirical coefficients are introduced. 
The latter result must be discussed in more detail. Previously, in numerical calculations, one or another turbu- 
lence model was used for calculating just the external (turbulent) part of the boundary layer. The laminar 
sublayer and the transition region of the boundary layer were described using empirical relations. In this case, 
"joining" of these layers had to be carried out. Similar problems arose in calculations of flows with a strong 
anisotropy of the pulsatory motion. 

As a substantial disadvantage of the model, we can note the complexity o f  the approxinmtions tbr the 
correlation that determines the energy redistribution between the components of  the tensor of the Reynolds 
stresses and the need to solve additional equations for the components of the tensor of the dissipation rate. In 
this connection, the question of what justifies the substantial complication of  the initial equations can be 
brought up. The tbllowing reasoning can be produced to answer it. 

To date, hundreds of works have been published that employed the K-E model or modifications of the 
quasi-isotropic turbulence model. These investigations demonstrated that a single system of equations and a 
single system of empirical coefficients do not work in describing flows of different types. In other words, the 
use of relatively simple approximations tbr unknown correlations does not permit the development of a fairly 
universal turbulence model. A probable reason tbr this result is that the nonlinear interactions of turbulent vor- 
tices cannot be described with the aid of simple linear relations. Theretbre, the complexity of the approxima- 
tion by itself should raise no objections, if it describes correctly the dissipation process or the process of 
energy redistribution in the equation for the Reynolds stresses. Another aspect of  this problem is that presently 
the complexity of the equations is not a serious obstacle to pertbrming one or another numerical calculation. 

In conclusion it should be noted that the proposed locally anisotropic turbulence model was tested tbr 
just two relatively simple flows. It will be possible to draw valid conclusions about the capabilities and disad- 
vantages of the model after wider tests, including a series of numerical calculations of  various flows. 

N O T A T I O N  

D 0 63 
Dt - ~t  + Uk ~----~-k; Uk, averaged velocity; R 6 = (uit{i), single-point correlation of velocity pulsations; K 

= R i i / 2 ,  turbulent kinetic energy; Pk = -R ikU~- , i ,  generation of turbulent energy; E = V(Ui.klli.k>, dissipation rate 

of Reynolds stresses; t, time; ui, velocity pulsation; 13, density; v, kinematic viscosity; vt, coefficient of turbu- 

lent viscosity; 6 6, Kronecker symbol; angular brackets denote averaging; comma in front of a subscript denotes 

differentiation; fta, fl ,  fe, E, and D, empirical wall functions; F 6 = (~.ui) + ~ u i ) ) / p ,  term of generation of tur- 

bulent energy due to the action of the external force; Pij = -(RikUj.k + Rj.kUi,k), generation of Reynolds stresses 

by the average-velocity gradient; ~i j  = (p(ui,i + uj . i ) ) /P,  correlation deternlining energy redistribution between 

components R6; Eij = V(Ui.kUj.k), tensor of dissipation rate; D i j  = --[(UiUjUk) + ((pUi)~j/,. + (pui )~) ik)  - V(llil~lj),k],k, dif- 

fusion term; fi, P, pulsations of the external force and the pressure, respectively. Correlations entering the equa- 

tion for the tensor of the dissipation rate: F(e)ij = v((ui,-ff./.k)+ ((uj,~.k))/p, P(el)ij = -(eikUj,k + ~ikUi,k), P(~2),:i = 

--VUm.k((Ui,kUj,m) + (tlj,klgi.m)), P ( e 4 ) U  = --2V(Ui,kblj,rnUk,m) , P(~3)(i = --V((l~i.kUm)Uj,km + (u.i.~um)Uij~m), Y(~)zli = 

--2V2(Ui.kmlILkrn), IFI(E)ii = --V((Ui.up.ik) + (Ui.tP,ik) ), D(E)ij = Veij,k~-, T(e)ij = --V( (Ui,kUj.mUk,m) --E6,k),k; ~, coefficient of 
P 

volume expansion; gi, acceleration due to gravity; ~(z)i, dissipation term in the equation tbr the density of the 

turbulent heat flux; "c, temperature pulsation; dij - £ij 1 ~ii,  de~ree of anisotropy of  dissipation processes; hii ,  

tensor of anisotropy of Reynolds stresses; lit,, l i l t , ,  and Ft,, scalar invariants determining the degree of anisot- 

ropy of pulsatory motion: 111, = -bikbki /2 ,  l i l t ,  = bikbkmbmi/3, F b = 1 + 91It, + 27IIit , ,  b u = bikb~j, b 3 = bikbkmb,~i; 
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llj, Ilia, and Fa, scalar invariants determining the degree of anisotropy of dissipation processes: I l l  = 

-ditdki/2, Ilia = ditdtmdmi/3, Fa = I + 911a + 271//a; X1 = K (sijsij)l/2, normalized velocity gradient; Y+ = yux/v, 
E 

dimensionless distance from the wall; u~ = (vU,ywall)l/2; U.ywall ,  averaged-velocity gradient on the wall. The 

subscripts b and d indicate the way of defining scalar invariants. 
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